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Abstract

NSA's Security-Enhanced (SE) Linux enhances
Linux by providing a speci�cation language for security
policies and a Flask-like architecture with a security
server for enforcing policies de�ned in the language. It
is natural for users to expect to be able to analyze the
properties of a policy from its speci�cation in the policy
language. But this language is very low level, making
the high level properties of a policy di�cult to deduce by
inspection. For this reason, tools to help users with the
analysis are necessary. The NRL project on analyzing
SE Linux policies aims �rst to use mechanized support
to analyze an example policy speci�cation and then to
customize this support for use by practitioners in the
open source software community. This paper describes
how we model policies in the analysis tool TAME, the
kinds of analysis we can support, and prototype me-
chanical support to enable others to model their policies
in TAME. The paper concludes with some general ob-
servations on desirable properties for a policy language.

1. Introduction

Linux1 is a Unix-style operating system that has
been used as the basis for distributed systems such as
the Beowulf clusters for distributed computation orig-
inally developed by Thomas Sterling and Don Becker
at NASA Goddard [12]. Linux is a good choice for such
clusters because it supports high performance networks
for PC class machines.

Security-Enhanced (SE) Linux [15, 8] is a modi�ca-
tion of Linux initially released by NSA in January, 2001
that extends Linux with a exible capability for secu-
rity. SE Linux provides a language for specifying Linux

�This work is funded by DARPA.
1Linux is a registered trademark of Linus Torvalds.

security policies that cover all aspects of the system, in-
cluding process control, �le management, and network
communications. The SE Linux release includes an ex-
ample policy speci�cation. Policies are enforced using
the method in the Flask architecture [16], which uses
a security server to make policy decisions concerning
whether to grant user requests to the operating sys-
tem. To make decisions, the security server refers to
an internal form of the policy compiled from the policy
speci�cation.

Since the most convenient description of the policy
for user understanding is its \source" speci�cation in
the policy language, it is natural for users to expect
to be able to analyze the properties of the policy from
this source speci�cation. However, though speci�ca-
tions in the SE Linux policy language are independent
of implementation details, the language is very low-
level and detailed, making the high-level properties of a
policy di�cult to check by inspection. Our experience
as well as that of others (e.g., [11]) is that mechanized
formal methods can uncover errors that humans miss
in inspecting even the most carefully crafted speci�ca-
tions. For a user to analyze a typically intricate policy
speci�cation, mechanized tools are a practical neces-
sity. Tools such as Apol from Tresys Technology and
Tebrowse from the University of North Texas allow one
to observe simple properties of a policy essentially by
browsing the policy. For analyzing a policy for deep
properties, more powerful tools are needed.

To answer this need, we have taken some initial
steps to develop tool support for analyzing SE Linux
security policies using the tool TAME (Timed Au-
tomata Modeling Environment) [2, 3]. These steps in-
clude

1. creation of an abstract SE Linux model in TAME
with policy-independent and policy-dependent
parts,

2. design and implementation of an algorithm for ex-
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tracting a subset of a speci�ed security policy on
which to focus analysis,

3. design and implementation of algorithms for ex-
tracting the policy-dependent parts of the model
from a policy speci�cation, and

4. use of the results to model an example policy
based on the policy in the SE Linux release.

To model any system in TAME, it is necessary to de�ne
the components of a state machine representation of
the system: a state space, an initial state or states, and
a set of transitions. In TAME, transitions correspond
to actions with preconditions and e�ects (postcondi-
tions). In order to accurately model SE Linux plus a
security policy, both an understanding of Linux and a
clear de�nition of the semantics of the policy language
are essential. For example, an understanding of the
initialization process in Linux is needed to decide how
to represent initial states and can also be helpful in de-
termining the focus for a policy subset. The algorithms
of step 3 above, which extract functions and predicates
related to the e�ects and preconditions of actions, rely
on a correct interpretation of the meanings of certain
policy rules. As discussed below, there are places where
the documentation of the policy language semantics is
unclear. Using the algorithm in step 2, we have ex-
tracted a subset of the policy that uses only language
constructs whose de�nitions are well documented.

The ultimate goal of modeling SE Linux2 in TAME
is to determine whether the security policy has desired
properties. However, it is also of interest to check prop-
erties related to the well-formedness of the model and
the accuracy of the model's representation of the se-
curity policy. Thus, we are using theorem proving in
stages to check

1. a set of standard well-formedness conditions for
the model,

2. that the assertions checked by the SE Linux policy
compiler checkpolicy hold for our model of the
security policy, and

3. whether certain desirable security properties hold
for the model.

Stage 3 is predicated upon having a reasonable exam-
ple for a security policy and understanding what its
intended properties are. Unfortunately, because the
initial focus of our analysis is the system after initial-
ization, �nding a reasonable example policy is not as
simple as using the example policy in the release (or a
subset of this policy). At least for our system con�gu-
ration, when SE Linux is initialized and run with the

2Here and below, a reference to modeling SE Linux implies
that some security policy is included in the model.

example policy enforced, no e�ective user actions are
permitted [5]. Hence, no user actions can change the
state in security-relevant ways, and as a result, there
are no interesting properties to prove for the example
policy regarding system behavior involving user actions
after initialization. Thus, one of our tasks is to �nd a
reasonable extension of the example policy to analyze.

The remainder of the paper is organized as follows.
Section 2 describes the policy language, discusses its
semantics, and explains why the nature of its seman-
tics leads us to represent the operating system itself in
our abstract model of an SE Linux policy. Section 3
describes how we constructed an example policy for
analysis. Section 4 gives a brief overview of TAME,
and then describes how we modeled an example pol-
icy in TAME and how we have organized the model
for reuse with other policies. Section 5 describes our
progress with implementing mechanized support for
reusing our model. Section 6 describes both simple
and deep properties which we hope to verify for our
model, and our approach to the veri�cation. Finally,
Section 7 discusses policy languages and provides some
suggestions as to how, with appropriate enhancements,
the existing policy language could better support both
policy analysis and policy understandability.

2. The SE Linux policy language

The SE Linux security policy language is described
in [8], part of the documentation accompanying the SE
Linux release. We note that this language has changed
over time. In this paper, we deal primarily with the
language and example policy from the initial release of
January 2001, since our initial e�orts towards modeling
policies were based on this language.3 However, our
policy analysis approach is valid for any version of the
language.

The language description in [8] is somewhat infor-
mal, and is mostly given by example. Some of the lan-
guage constructs are not fully de�ned in [8]; however,
most of the constructs used in the example policy ac-
companying the release have reasonably complete de-
scriptions. Although the language permits de�nition
of policies based on type enforcement (TE), role based
access control (RBAC), andmulti-level security (MLS),
we have focused on analyzing policies that use only TE
and RBAC features. Below, we describe the syntax of
the TE and RBAC language constructs mentioned in
[8], and discuss how the semantics of these constructs
inuences how we model policies in TAME.

3We make an exception for our recent experiments with SE
Linux, which have of necessity involved the version of the lan-
guage available in the June 2002 release. Because dealing with a
moving target is di�cult, we have retained the original language
as the basis of our model rather than continuously adapt the
details of our approach to changes in the language.
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Policy language syntax. The SE Linux policy lan-
guage has four kinds of statements: declarations, rules,
constraints, and assertions. Declarations include role
declarations and type declarations. Rules include access
vector rules, which govern decisions made by the secu-
rity server about access requests, and transition rules,
which govern possible role changes of an object and TE
type assignments to newly created objects. Constraints
constrain the manner in which various access permis-
sions can be applied to various objects. Assertions are
statements about whether or not certain kinds of ac-
cess permissions are ever allowed by the policy. While
the declarations, rules, and constraints are enforced
by the security server at run time, the assertions are
checked by the policy compiler checkpolicy at policy
compile time. Thus, provided checkpolicy works cor-
rectly, the assertions can be used as simple properties
of the security policy that are available as lemmas in
the proof of deeper properties closer to the high-level
security goals of the policy.

Each language statement consists of a keyword
(e.g., allow for most access vector rules and
type transition for TE type transition rules) fol-
lowed by arguments that are expressed by using other
language elements such as type names, role names, ob-
ject classes, attributes, and permissions. The particu-
lar sets of representatives of these elements can depend
on the particular policy being de�ned (and the partic-
ular Linux con�guration for which it is being de�ned|
e.g., the particular kernel modules present). The sets
tend to be quite large. In the example policy with the
SE Linux release, there are 3 role names, 28 object
classes, 22 attributes, 115 permissions, and 253 type
names of which 21 are parameterized|meaning there
is a potentially unbounded number of type names.
Thus, policy speci�cations tend to be quite lengthy,
complex, and full of low-level detail.

The complexity of policy speci�cations is, in prac-
tice, somewhat reduced by the use of macros. Macros
can be either set macros that represent sets of per-
missions, sets of object classes, etc., or rule macros
that represent sets of rules and, usually, some asso-
ciated declarations. Although attributes are not de-
�ned as macros, an attribute behaves like a set macro
in that it can be used to represent the sets of types
declared to possess that attribute. Rule macros are
typically parameterized. For example, the rule macro
user domain has one parameter. Use of this macro
with type user t as parameter for all the rules for a
user and with type sysadm t as parameter for some
of the rules for a system administrator makes it easy
to see that the example policy allows a system admin-
istrator all the permissions that it allows a user, and
more; thus, the macros contribute to the understand-

ability of the intentions of the policy speci�er.

The policy language semantics and its impli-
cations. Individual constructs in the SE Linux pol-
icy language, unlike those in higher-level programming
languages and speci�cation languages such as Z [17]
and the B language [1], do not have a �xed or uni-
form semantics. Although every object class has an
associated set of permissions with names suggestive of
their intended meanings, the actual semantics of any
SE Linux permission is determined by how that per-
mission is used to control system transitions. For ex-
ample, a successful write system call by a process can
a�ect the content of a �le, but write permission to the
�le is not equivalent to guaranteed success: the process
must also have setattr permission to a �le descriptor
for the �le. Similarly, the form of an allow rule:

allow <type_s> <type_t>:<obj_class> <perm>

(where <type s> is the \source type" and <type t>
is the \target type") suggests a direct interpre-
tation for many of its instances, e.g., \a pro-
cess of type <type s> can be granted permission
<perm> to an object of class <obj class> and type
<type t>". However, there are many exceptions in
which <type s> is not the type of a process, as in:

allow file_t file_t:file transition,

or the type <type t> is not associated with an object
in class <obj class>, as in:

allow init_t file_t:process execute.

Hence, the signi�cance of any instance of an SE Linux
policy rule varies with the nature of the arguments to
the rule. And ultimately, like permissions, allow rules
are given their actual semantics by their use in the
permissions checks controlling system transitions.

We note that because multiple permissions can be
needed for an actual ow of information and because
the semantics of allow rules depend upon how they
are used in the system, precisely analyzing the pol-
icy for information ows is more complex than simply
checking for the existence of a path between security
contexts by tracing through allow, type transition,
and other rules in the policy. Because the meanings
of the policy rules are so intertwined with the oper-
ating system, one cannot reason precisely about the
e�ectiveness of a policy without modeling the system
to which it is to be applied. Therefore, to model an
SE Linux policy, we also must model the SE Linux
operating system on some level.

3. Choosing an example policy

The example policy that accompanies the SE Linux
release is not a good example to aid in developing our
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analysis methods because 1) it does not contain su�-
cient allow rules to make SE Linux usable when it is
enforced, and 2) it is too large and complex for an ini-
tial feasibility study. Thus, to obtain a good example
policy for analysis, we need �rst to extend that policy
\judiciously" so that it allows nontrivial user behavior
after system initialization, and then to extract a subset
of the extended policy.

Extending the original policy. The manner in
which the original SE Linux example policy must be
extended to be usable is platform dependent. Because
it is so low-level, it must be customized to work for
the con�guration (e.g., the installed packages and dae-
mons) of the machine on which it is installed. This can
be done by running SE Linux in non-enforcing mode
and logging all the denials of permission requests, and
then formulating allow rules corresponding to the de-
nials and adding them to the policy. This must be
done carefully to ensure that only permissions neces-
sary for correct operation of the system are added. The
newrules script provided with the policy can be used
to generate the necessary allow rules from a log �le.
We have obtained a policy usable with the newer ver-
sion of SE Linux on our system by adding approxi-
mately 30 allow rules. For veri�cation purposes, we
have used these rules as guidance for extending the
original policy into a reasonable policy to analyze, in
which there can be nontrivial user behavior after sys-
tem initialization.

Choosing a subset. Security policy speci�cations
written in the SE Linux policy language are generally
large and complex. For example, the example security
policy that accompanies the original SE Linux release
contains (prior to macro expansion) 253 type declara-
tions, 708 allow rules, and 187 type transition rules.
(After expanding all but permissions set macros, our
example subset of the policy alone has more than 1,500
allow rules.) Such a complex policy requires a possibly
prohibitive amount of space and time for modeling and
analysis.

It is di�cult to prove properties of the policy with-
out modeling the full policy. However, modeling and
proving properties of a subset can help develop con�-
dence that the policy achieves its goals. Subsets are
useful for policy debugging: If the property does not
hold for the subset, it will not hold for the full pol-
icy either. And when the property does hold for the
subset, some evidence has been accumulated about its
validity for the full policy.

A subset can be chosen with security properties of
interest in mind. For example, if one of the security
properties of interest is that the system log �les cannot

be altered by the user process, the subset should retain
rules pertaining to the types relevant to the system log
�les (e.g., var log t), the type associated with the user
process (user t), and the permissions necessary for the
write system call (write or append permission to �les
and setattr permission to �le descriptors). To fully
prove certain other properties, e.g., \a user may only
write to his own �les", can require a large portion of
the policy to be retained. For this property, one may
wish to restrict the policy subset further by eliminating
some of the �le types, and show that in the smaller
subset, the user may only write to his own �les. This
approach permits faster initial results.

In our algorithm, described in more detail in Section
5, a subset of a security policy is extracted by restrict-
ing attention to selected sets of types and system calls.
The policy is then reduced by slicing to contain only
the types of interest and the set of permissions associ-
ated with the selected set of system calls.

For our initial experimental analysis, we consider
the portion of the operating system necessary for �le
management and process control. Subsets that in-
clude the types associated with hardware interfaces,
networking, or initialization of the system could be
modeled similarly. Another consideration in our choice
of an initial policy subset for analysis is the lack of
full documentation of some of the policy language con-
structs. As noted earlier, our chosen subset avoids
those constructs.

4. Modeling SE Linux in TAME

4.1. A TAME overview

TAME is an interface to the theorem prover
PVS [14] that simpli�es specifying, and proving prop-
erties of, automata models. To support specifying
various kinds of automata, TAME provides templates
that allow the user to specify the standard parts of an
automaton|its state space, its start state(s), and its
transitions. To support reasoning about the speci�ed
automata, TAME provides a set of standard support-
ing theories and a set of strategies that support proving
automaton properties either automatically (if possible)
or using proof steps resembling the natural steps used
in high-level hand proofs.

TAME currently supports specifying and reasoning
about three classes of automata: Lynch-Vaandrager
timed automata [10], I/O automata [9], and SCR au-
tomata [6]. The TAME model for SE Linux that we
have been developing is based on the I/O automata
model. Table 1 shows how TAME organizes the spec-
i�cation of an I/O automaton using a standard set
of constructs. The type MMTstates represents the
state space, and the state predicate start speci�es
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the members of the state space that are acceptable
initial states. The data type actions, the predicate
enabled, and the function trans together specify the
transitions of the automaton: actions describes the
set of actions that can trigger transitions, and enabled

and trans describe the preconditions and e�ects of
the actions. Constructors in the datatype actions

may have parameters that represent the arguments of
the action. The transitions of the automaton are the
prestate-poststate pairs (s, trans(a,s)) for which
enabled(a,s) has value true.

The proof support provided by TAME is mainly
aimed at proving invariant properties of automata.
The invariant properties of greatest interest are state
invariants (i.e., properties of every reachable automa-
ton state) and transition invariants (i.e., properties of
all reachable transitions). A state is reachable if it is
either an initial state or can be reached from an ini-
tial state by following �nitely many transitions of the
automaton. State invariants usually must be proved
by induction over reachable states, with a base case
for initial states and an induction step for each type of
action. Transition invariants can be proved without in-
duction, but may require state invariants as lemmas in
their proofs. As noted in [4], most high-level security
properties of an SE Linux policy can be represented
as either state or transition invariants. The existing
TAME proof support will be useful in proving such
properties; however, it can be anticipated that advan-
tage can be taken of the common features of TAME
models of SE Linux to add proof steps especially geared
to these models. This issue is discussed further in Sec-
tion 6.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Template Part User Fills In Remarksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MMTstates Type of the “basic A record type with
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the state variables state variableiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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defining the s = (some
initial states record value)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

actions Declarations of Represented as a
the actions datatype with a

constructor for every
kind of actioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

enabled Preconditions for enabled(a,s) =
all the actions precondition

of action a
in state siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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by action aiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1. Major parts of a TAME specification

4.2. A TAME model of SE Linux

To model SE Linux abstractly in TAME, one must
choose an appropriate state space, set of initial states,
and set of transitions. In our TAME model4, the state
space is determined by a set of variables of which
the principal variable is objects, the set of objects
(such as processes, �les, directories, �le descriptors,
etc.) managed by the operating system, and there is
a single initial state. We chose to model the system
from the point after the system has been initialized,
and the initial state in our model reects this. As in
any TAME model, transitions are the result of actions
in the datatype actions, which have associated pre-
conditions and e�ects. Actions in our model are ab-
stract system calls issued by processes. Our abstract
system calls correspond to \atomic system operations"
from which the more complex actual system calls in SE
Linux can be built. The atomic operations are chosen
to be as course-grained as possible, but so that each
requires a �xed set of permissions. This simpli�es our
task of ensuring that we check only the required per-
missions in our model in checking the precondition of
a system call invocation. (See also Section 7.)

The abstract model of SE Linux has two signi�cant
aspects: a �xed aspect that depends only on the op-
erating system, and a variable aspect that depends on
the particular security policy imposed on the operat-
ing system and, to some extent, on the choice of policy
subset to model. The �xed parts of the model include
the state space, those parts of the preconditions of ac-
tions involving checks of arguments (e.g., if a process
p issues a write system call with �le descriptor argu-
ment fd, then fd must be one of p's �le descriptors),
and those parts of the e�ects of actions that do not
involve type or role transitions. The variable parts of
the model include the parts of the preconditions of the
actions that derive from the policy's allow rules and
the parts of the e�ects that derive from the policy's
type transition rules. The choice of initial state is
also variable. E.g., in our initial example model of
a policy subset, our choice of initial state is a�ected
by the elimination of that part of the full policy con-
trolling what happens during system initialization. A
more detailed description of the nature of the �xed and
variable parts of our model is given below.

In the process of developing our example model, we
have developed and partially implemented an approach
that can greatly simplify the modeling process for SE
Linux with new policies. The �xed parts of our model
can be reused in new models. We are developing user

4Our TAME model can be found on the NRL SE Linux
project page at http://chacs.nrl.navy.mil/SoftwareEng.
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support for synthesizing the variable parts of new mod-
els. Our progress towards this end is discussed in Sec-
tion 5.

Fixed parts of the model. A major part of our
model that is �xed is the state space, the cross prod-
uct of the value spaces associated with the state vari-
ables. In addition to the principal state variable
objects, there are two kinds of additional state vari-
ables: shadow variables and indexing variables.

The values of the variable objects are sets of
members of the datatype OBJECT. The constructors in
OBJECT provide a way to construct an object of every
class. The formal parameters of the constructors be-
have like �elds in a record. For each object class, the
choice of formal parameters to require is determined
by three factors: 1) the need to tag every object with
its security context (or security label)5, 2) the need
to represent (abstractly) the e�ects of system calls on
the object, and 3) in some cases, the need to be able
to state system properties of interest. Thus, the argu-
ments of mkPROCESS include Pcontext to hold the se-
curity context of a process, Pcontent to count changes
to internal variables of a process (perhaps due to a
read system call by the process), and Pstartcontext

to support formulation of properties concerning how a
process with a given Pid may change its security con-
text from its original one. The following extract from
the declaration of OBJECT shows the full details of our
abstract representation of processes:

OBJECT: DATATYPE

mkUndefOBJ : UndefOBJ?

mkFILE(Fname: Fullpathname, ...): FILE?

mkPROCESS: (Pid: PID,

Pcontent: nat,

Pcontext: SecurityContext,

Pstartcontext: SecurityContext,

Pexecutable: OBJECT,

Pchildren: Setof[PID],

Pparent: PID,

Pwaiting: Queue[PID],

Pstatus: ProcStatus): PROCESS?

mkFD: (FDid: FDID, ...): FD?

...

END OBJECT;

5In SE Linux, every object has a security context that con-
tains such information as an associated user, TE type, RBAC
role, and possibly an MLS security level. The integer-valued
SID (security identi�er) actually used as the security label in SE
Linux is a session-speci�c hash encoding of the security context.
This implementation detail is not necessary in our model.

The current value of the variable objects in any
system state contains almost all of the information
needed to distinguish that state. However, much of
that information, such as whether objects contains
a process with a certain Pid value and if so, what
the OBJECT value of that process is, is very di�cult
to express in terms of objects itself. The purpose of
shadow variables|in this case, Processpresent:[PID
-> bool] and Process:[PID -> OBJECT]|is to pro-
vide more direct access to this information. The index-
ing variables are used in the management of numerical
IDs (such as Pid) and version numbers.

Much of the description of actions in the model is
also �xed. In particular, the de�nition of the datatype
actions essentially consists of declarations of the var-
ious system calls and their arguments, as in the follow-
ing extract:

actions: DATATYPE

BEGIN

...

creat(p_creat:(PROCESS?),

pn_creat:(Fullpathname)): creat?

...

END actions;

The predicate enabled is de�ned in TAME as a con-
junction of other predicates, most essentially the \spe-
ci�c precondition" enabled specific. The de�nition
of enabled specific is �xed at the top level, becom-
ing policy-dependent only at the level of evaluation of
PermissionGranted. For example, as shown below,
the precondition of creat(p,pn) in s �rst checks that
p is a process in s, pn does not name a �le (or directory)
object in s, and parentname(pn) names a directory in
s; then it checks PermissionGranted.

enabled_specific(a:actions, s:states): boolean =

CASES a OF

...

creat(p,pn):

Processpresent(Pid(p),s) &

p = Process(Pid(p),s) &

NOT(Filepresent(pn,Currentversion(pn,s),

s)) &

FILE?(File(parentname(pn),s)) &

Fclass(File(parentname(pn),s)) = dir &

PermissionGranted(creat(p,pn),s),

...

ENDCASES;

The de�nition of trans, which mainly consists of the
de�nitions of the e�ects of individual system calls, is
similarly �xed at the top level, becoming policy de-
pendent only at the level of evaluation of \new object
type" functions. For example, the \new object type"
function Newfiletype, which follows the type transi-
tion rules in the policy to compute the TE type of a
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newly created �le from the TE types of 1) the pro-
cess creating it and 2) its parent directory, is used in
the creat(p,pn) case of trans in representing the TE
type of the newly created �le object.

Variable parts of the model. The variable parts
of our SE Linux model are the policy-dependent parts
of enabled specific and trans as described above,
together with the initial state. As discussed in Sec-
tion 5, we have designed and implemented prototype
tools that aid the user in �lling in the policy-dependent
parts of a TAME model.

In enabled specific, the policy-dependent part is
the de�nition of the predicate PermissionGranted de-
termining whether the required permissions for system
calls can be granted. In PermissionGranted in our
example model, we see (essentially):

PermissionGranted(a:actions, s:states): boolean =

CASES a OF

...

creat(p,pn):

PathAllowed(GetTE_type(p),

parentname(pn),

search,

s) &

Allowed(GetTE_type(p),

Newfiletype(GetTE_type(p),

GetTE_type(File(parentname(pn),s))),

file,

create) &

Allowed(GetTE_type(p),

GetTE_type(p),

fd,

create) &

Allowed(GetTE_type(p),

GetTE_type(File(parentname(pn),s)),

dir,

add_name),

...

ENDCASES

where the predicate Allowed is directly derived from
the allow rules in the policy, and the predicate Path-
Allowed applies Allowed recursively over the ancestor
directory names of the new �le name pn. There is a
fairly straightforward algorithm for compiling Allowed
from the speci�cation of a policy. The de�nition of
PermissionGranted down to the level of Allowed and
PathAllowed is derived from the description of the per-
missions associated with particular system calls. Be-
cause the policy speci�cation language does not yet
support such a description, it is not yet possible to
compile the full de�nition of PermissionGranted from
a policy speci�cation. As discussed in Section 7, a fur-
ther complication in compiling PermissionGranted is

the complexity of the relationship of permissions to
system calls.

In trans, the policy-dependent part is the de�-
nitions of the functions Newfiletype and Newproc-

type that compute the types of newly created ob-
jects. These functions can also be compiled from a
policy speci�cation, in a manner similar to that used
for Allowed.

As discussed in Section 5, the construction of an
initial state, the choice of a subset to model, and other
simplifying choices can be supported by a combination
of techniques. These include a tool for deriving policy
subsets and libraries from which the user can select
appropriate sets of system calls and initial state objects
to include in the model.

5. User support for modeling policies

Because of the size and complexity of policy speci�-
cations and SE Linux itself, developers using our anal-
ysis methods will need tool support for creating the
policy-dependent and other variable parts of a TAME
model for SE Linux. We plan to o�er two types of
support: automatic extraction tools and libraries. We
have implemented a policy slicing tool for extracting
policy subsets. We have also implemented a tool that
extracts those policy-dependent parts of a TAME
model that can currently be computed from a speci-
�cation in the policy language and saves these parts
as PVS theories that can be imported into a TAME
template for modeling policies. We have made a start
towards building libraries to aid in the construction
of the variable but policy-independent portions of the
model.

5.1. Automatic extraction tools

This section describes our algorithms for automat-
ically extracting a policy subset and for then creat-
ing the policy-dependent portions of a TAME model
for SE Linux from the (possibly reduced) policy. The
�rst algorithm extracts a policy subset of interest using
slicing. Further algorithms extract 1) the list of allow
rules, translating them into the Allowed predicate, and
2) the type transition rules, translating them into
the Newfiletype and Newproctype functions.

Policy slicing. The slicing algorithm allows a user
to specify a policy subset by specifying a set of TE
types T and, for each object class oc, a set of per-
missions P(oc). These sets are chosen based on the
types and system calls to be analyzed, as described in
Section 3. The permissions in each P(oc) are those
needed for the system calls that are to be analyzed.
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The permissions are speci�ed as (object class, permis-
sion) pairs, that is, by object class rather than as a
monolithic set of permissions. We do this because the
same permission name may be associated with multi-
ple classes and it may be desirable to retain the per-
mission for some object classes while removing it for
others. For example, many of the object classes have
a setattr permission, but for the set of system calls
that we chose for our initial analysis, the setattr per-
mission is relevant only for the �le descriptor class.

Because we wish both to keep the policy concise
and to retain useful information on relationships be-
tween types (as described in Section 2), the policy is
reduced with all its macros still in place. Set macros
are reduced according to the speci�ed permissions and
classes. To do this, the algorithm �rst determines, by
examining all uses of a set macro, whether the macro
de�nes a set of classes or a set of permissions. If it
proves to be a permissions macro, the algorithm then
determines to which class(es) it applies. If a macro
call has in its argument list a type or the stem of a
type (e.g., user is the stem of type user t) not in T,
the macro call is normally removed. An exception is
made for calls to the macro assert execute because it
recursively de�nes assertions for the arguments in the
macro call. In this case, type stems for types not in T

are removed from the call, but the macro call remains.

The algorithm removes all permissions from any rule
involving an object class oc that are not in P(oc),
and then removes all declarations and rules in TE �les
that either explicitly reference types not in T or have
no remaining permissions. Because attributes are fre-
quently used in place of types, the set of attributes
associated with T is calculated and is used to extend T

during the slicing process.

Because T may include parameterized types, it is
also necessary to recognize uses of types that are in-
stantiations of these types. For example, our initial
subset is speci�ed using a T that includes $1 tmp t.
Inclusion of this type in T is meant to indicate that the
subset is to retain all types whose declarations are de-
rived by instantiation from the (unique) declaration of
$1 tmp t. Determining the instantiations of the dec-
laration of $1 tmp t is complicated by the fact that
calls to the macro in which $1 tmp t is declared can
be nested inside other macros. This problem is most
easily solved by expanding the rule macros. Because we
are reducing the policy with macros in place, we use a
coarser approach based on the type declarations in the
policy. Uses of a type explicitly declared in the policy
are only retained if that type is included in T. Uses of a
type not explicitly declared in the policy are retained
if it is possible that the type could be an instantiation

of a parameterized type in T. For example, atd tmp t

and $1 xserver tmp t, two types declared in the full
policy, are not included in the set T for our initial
subset; thus, uses of atd tmp t and $1 xserver tmp t

are eliminated. Uses of the type user xserver tmp t,
which has no declaration of its own, are retained in
spite of the fact that $1 xserver tmp t was elimi-
nated, since user xserver tmp t could be an instanti-
ation of $1 tmp t. By following this practice, we avoid
unintentional deletions from the policy.

Extracting policy-dependent model parts. An-
other algorithm has been developed to extract a sim-
ple form of all allow rules that derive from a set of
TE �les. Allow rules of this simple form have single
types in their type �elds. The object class and per-
missions �elds of rules in this form may contain sets
or names of sets, exclusive of indirect set descriptions
involving the complement operator � or � for \all as-
sociated permissions". However, the permissions set
in the permission �eld must contain only permissions
valid for every object in the object class �eld.

The algorithm proceeds as follows. All rules that
are not allows are removed, and the rule macros are
\attened", either by using the m4 macro processor, as
is done by the current implementation, or by determin-
ing the dependencies among the macros and expanding
them in bottom-up order. Next, the rules are rewritten
so that the �rst and second �elds of every rule contain
a single type. This is done by �rst replacing every at-
tribute by its associated type set and then splitting
any rule with multiple types in a �eld into a set of
rules. Occurrences of � and � are handled by creat-
ing a named set that consists of all the permissions for
the class in the object class �eld. Each occurrence of
� is replaced by this named set, and each occurrence
of � is replaced by an explicit subtraction from this
named set. This step is complicated by the fact that
the object class �eld sometimes contains an object class
macro composed of classes with di�ering permissions
sets. E.g., the object class macro dir file class set

contains the class for directories as well as several dif-
ferent �le classes. In such a case, the rule must �rst be
split into multiple rules, one for each of the di�ering
permissions sets and their corresponding classes. Fi-
nally, the permissions sets are combined for rules hav-
ing identical source type, target type, and class type
�elds. After this step, a straightforward translation is
done to convert the allow rules into the form of the
Allowed predicate.

A similar algorithm is used to extract all the type
transition information. The primary di�erence is that
in order to de�ne the functions Newproctype and
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Newfiletype, the type transition information must be
split based on the class �elds in the type transition

rules into transitions for de�ning the TE types of new
processes and transitions for de�ning the TE types of
new �les or directories.

Implementation of the algorithms. The algo-
rithms have been implemented using Python [19, 18],
for both the January 2001 and June 2002 versions of
the SE Linux policy language. Python was chosen for a
combination of reasons. Being interpreted, it provides
good support for rapid prototyping and experimenta-
tion. Additionally, its data structures are both power-
ful and easy to use, and its performance is reasonably
good. We speci�ed our subset by choosing 67 of the
253 types in the full policy, including three of the 21
parameterized types, and focusing on system calls re-
quiring 36 of the 364 (object class, permission) pairs
referred to in the full policy. The implementation ex-
tracts our example subset from the full policy and gen-
erates the corresponding policy-dependent PVS theo-
ries in 54 seconds.6

The extraction algorithm is implemented as a set of
functions, at the core of which is a set of specialized
functions for parsing and extracting relevant informa-
tion from single language constructs. E.g., allowargs
is used for extracting argument values from allow-like
rules. Higher-level functions used by the algorithms
rely on these core functions. There are higher-level
functions to, for example, 1) compute a policy slice, 2)
compute the set of permissions associated with a triple
consisting of a source type, target type, and class, and
3) perform the translation of the allow rules in a (full or
subset) policy into the predicate Allowed in the TAME
model of the policy.

5.2. Library support

For proving properties of a policy slice based on a
selection of system calls and TE types, it is only nec-
essary to model the selected system calls. Thus, the
actual set of system calls included in the model should
also be allowed to be a variable part of the model. How-
ever, the de�nitions of the preconditions and e�ects of
system calls are policy-independent down to the level
of PermissionGranted, Newfiletype, and Newproc-

type. Thus, down to this level, they can be written just
once for use in any model. We have begun to develop
a TAME library of action declarations and the �xed
parts of action preconditions and e�ects for SE Linux
models. This library can eventually be used to support
the automatic construction of the (policy-independent)

6Execution time is for a Sun Ultra 450 with two UltraSPARC-
II 296 MHz CPUs and 2GB memory, running Solaris 5.6.

top level de�nitions for the actions in a model, once a
user selects the system calls to include. Initially we are
focusing on 13 system calls for basic �le system man-
agement and process control. Extending the library
to include system calls related to sockets would allow
modeling communication over the network.

As noted previously, the user may also wish (and
need) to vary the choice of initial state in a model. For
this variable aspect of the model, another library can
be developed that allows users to select the processes
and other objects to automatically include in their de-
sired initial state. A library of �le objects and directory
objects for the user to choose from can be generated
from the file contexts �le in the SE Linux release,
but a library of processes for various initial states needs
to be created by hand.

6. Checking properties of models

As noted in the introduction, we are checking SE
Linux properties in stages, starting with simple prop-
erties, and advancing to deeper properties.

6.1. Simple properties

There are two types of simple properties: well-
formedness properties and policy assertion properties.
The well-formedness properties are policy-indepen-
dent, while policy assertion properties are policy-
dependent.

Well-formedness of the TAME speci�cation as a
PVS speci�cation is checked simply by applying the
PVS type checker and proving any type correctness
conditions that the type checker generates. Addi-
tional well-formedness conditions include shadow vari-
able properties, which assert that the shadow variables
have the intended relation to the variable objects,
and object type properties, which show that the OBJECT
components of \reachable" objects have the expected
object class. Below are an example shadow variable
property and an example object type property:

FORALL(pn:Fullpathname,pid:PID):

Processpresent(pid,s) IFF

(EXISTS(o:OBJECT): member(o,objects(s)) &

PROCESS?(o) &

pid = Pid(o));

FORALL(o:OBJECT):

member(o,objects(s)) & PROCESS?(o) =>

(FILE?(Pexecutable(o)) &

Fclass(Pexecutable(o)) = file);

These can be translated as: \Processpresent(pid,s)
is true if and only if there is a process object in s

whose Pid is pid" and \the executable associated with
any process object in s is of �le class", respectively.
Such properties are not true in every state s in the
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state space but are expected to hold in every reachable
state of the model. Therefore, they must be proved as
state invariants, in most cases by induction over the
reachable states. Induction proofs of these properties
can be facilitated by introducing a new TAME strategy
for using action preconditions that omits expanding
PermissionGranted, thus taking advantage of the fact
that the properties are policy-independent.

Policy assertion properties are derived directly from
the neverallow statements that comprise the asser-
tions of a policy. Such a property can be checked di-
rectly simply by expanding the Allowed predicate and
using the result to check that no case forbidden by the
associated neverallow statement is allowed. Check-
ing these assertions provides some assurance that the
de�nition of Allowed in the model is consistent with
the speci�cation.

6.2. Deeper properties

The deeper properties of greatest interest are those
that derive from the security goals that the policy de-
signer wishes to achieve for a Linux system in a dis-
tributed environment. A set of eight general goals for
the example policy in the SE Linux release is given
in [15]. These goals are stated at a very high level,
e.g., \protect the integrity of the kernel", \protect
the administrator role and domain from being entered
without user authentication", and \protect users and
administrators from the exploitation of aws in the
netscape browser by malicious mobile code". Deter-
mining the precise properties SE Linux should have to
achieve the high-level goals is di�cult without more
explicit input from the policy designer.

Here are two possible deeper properties of interest:

1. Only a process whose initial TE type is klogd t,
or one of its descendents, ever gets permission to
execute a write system call to kernel log �les.

2. Any process that has search permission in a di-
rectory has search permission in all ancestors of
the directory.

Property 1, which can be formulated as a transition
invariant, may be one of the properties desired for
protecting kernel integrity. Property 2, which can
be formulated as a state invariant, is interesting for
a di�erent reason: if this property holds, then ev-
ery use of PathAllowed involving the search permis-
sion can be changed to a simple (non-recursive) use
of Allowed. This would be a very useful lemma in
proving other properties, since it would allow relatively
complicated reasoning about the recursive predicate

PathAllowed to be replaced by more straightforward
reasoning about the simple predicate Allowed.

Other properties of interest may be the informa-
tion ow properties being checked by Herzog and
Guttman [7]. As noted in Section 2 precise checking
of such information ow properties cannot be done by
straightforward reasoning from the policy rules. These
information ow properties can likely be checked in
the TAME model, since this model contains more sys-
tem detail than is embodied in the policy rules alone.
However, the feasibility of doing so is currently an open
question.

6.3. Feedback from un�nished proof goals

Every un�nished proof goal occurring in the course
of the proof of a state or transition invariant corre-
sponds to a state transition that, if it is reachable, is
a counterexample: a transition that either fails to pre-
serve the state invariant or fails to satisfy the transi-
tion invariant. To handle an un�nished proof goal, one
can often introduce additional facts that show that the
prestate in the transition is not reachable. These facts
may be facts about the speci�cation that have not yet
been used in the proof (e.g., the inductive hypothe-
sis), or they may come from separately proved invari-
ant lemmas or lemmas about the data types used in
the speci�cation. However, sometimes the un�nished
goal will correspond to a real counterexample. In such
cases, it is useful to be able to simulate the system
to discover whether the prestate is indeed reachable.
Creating such a simulation capability is work for the
future. Two possible approaches are 1) use Lisp code
mimicking the TAME speci�cation of the model; and
2) create a testing facility within SE Linux that allows
arbitrary system calls to be issued from arbitrary se-
curity contexts and allows those parts of the system
state relevant to invariant properties of interest to be
observed.

7. Discussion

The nature of our project has led us to consider
the features of a policy language that are most useful
for various purposes, especially policy analysis. In our
e�orts towards supporting analysis of SE Linux secu-
rity policies, we have treated the policy language as a
speci�cation language. In this section, we �rst discuss
the kinds of support that are needed in general from
a speci�cation language, and the degree to which the
current SE Linux policy language provides those kinds
of support. We then discuss possibilities for enhanc-
ing the support provided by enhancing the language.
We believe our observations about the SE Linux pol-
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icy language can provide guidance in the design or en-
hancement of other policy languages.

7.1. Desirable properties of a speci�cation
language

Features desirable in a speci�cation language in-
clude:

1. Adequacy and exibility.

2. Good documentation, including a well-described
semantics.

3. Ease of use.

4. Usefulness for communication.

5. Suitability for implementation-independent anal-
ysis.

6. Simple support for modi�cations to achieve par-
ticular goals.

Software developers are more likely to add security fea-
tures to their software if they have access to a security
policy de�nition language with the properties listed
above.

The current SE Linux policy language is quite
strong on property 1. Though the question of what
kinds of security can be provided by use of the lan-
guage requires further study, the language is low-level
enough to resemble an \assembly language" into which
many high-level security policies can be compiled.

A major missing factor in the language is a way
to associate permissions checks with system calls in
a systematic way that can be understood by policy
analysis tools. Currently, this information is partially
documented in [15] in tables and in text; the ultimate
documentation is in the code of the system calls. A
related di�culty is that associating a �xed set of per-
missions with a given system call is problematic due
to the complexity of the system call code, in which
di�erent permissions can be checked in di�erent code
branches. For example, the usual open system call re-
quires di�erent permissions when it is applied to the
name of a nonexistent �le than when it is applied to
the name of an existing �le. Thus, it might be di�cult
to specify the full details of the permissions associated
with system calls in a simple table. One possible so-
lution is to follow the approach we took in our model,
namely, to create simple \atomic system operations"
(i.e., without branches in their code requiring di�erent
permissions) in terms of which the standard system
calls can be de�ned, and associate �xed sets of permis-
sions with these atomic operations. Abstract models
could then base their actions on these atomic opera-
tions rather than the more complex high-level system

calls. In our model, we have in fact restricted open to
an operator on existing �les, since the usual e�ect of
applying open to the name of a �le that does not exist
can be achieved by creat.

One factor that impedes the degree to which the
language can ful�ll properties 3, 4, 5 and 6 are that
the language is currently weak with respect to prop-
erty 2. The incompleteness of documentation is under-
standable in a product still in the development stages,
and the documentation has gradually improved. But
there are still gaps in the documentation. For exam-
ple, type change rules are said to be associated with
relabeling operations, but the exact nature of these
operations is not documented. A second factor that
limits properties 3, 4, 5 and 6 in the policy language
is that it is so low-level. Whether a higher-level lan-
guage can be designed that will allow policy designers
to create, modify, and communicate the intentions of
their policies more easily is an open question.

7.2. Possible improvements to the SE
Linux policy language

Several minor modi�cations to the SE Linux policy
language would make it more friendly to the analy-
sis of policy speci�cations. For example, our policy
slicing algorithm needs to be able to identify the ob-
ject class(es) associated with permissions macros. Our
extraction algorithms for computing Allowed, New-

filetype, and Newproctype from a policy speci�ca-
tion need to be able to distinguish rule macros from
set macros, macros for permissions sets from macros
for object class sets, and so on. Currently, our algo-
rithms are unnecessarily complicated because this in-
formation about the macros in the speci�cation has to
be computed indirectly from other information in the
speci�cation. This problem could be solved by replac-
ing the macro construct by a similar construct con-
taining additional information to (e.g.) 1) distinguish
rule macros from set macros, 2) distinguish macros for
permissions sets from macros for object class sets, and
3) identify the object class or classes associated with a
permissions set macro.

Other aspects of the macro construct can make a
policy di�cult to analyze by inspection. One exam-
ple is the use of parameterized types in macros where
these types are not locally declared. E.g., the parame-
terized type $1 home t is used in the example policy in
the macro su domain but only declared in the macro
user domain. This is safe only if su domain is used
only inside the user domain macro. This in fact is the
case in the example policy, but establishing the fact
that such stray parameterized types are always used
safely requires considerable computation. The need
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for such a safety check would go away if macros were
replaced by functions not involving global variables.

Modifying the language into something closer to a
strongly typed programming language would permit
the use of functions rather than macros, and facilitate
other consistency checks that one gets \for free" from
type checking in such a language. We note that the Z
speci�cation language, which has some of these charac-
teristics, was used to specify the security enforcement
policy for DTOS [13] in a previous related project. The
SE Linux policy language could almost certainly be
modi�ed to be more like a programming language and
still, if desired, retain its low-level characteristics.

However, a higher-level language that can specify a
security policy with a clearer relationship to desired
high-level security features would be much better in
regard to ease of use, understandability, and ease of
modifying policies. Using the current language or a
close relative as the target language to which policies
in a higher-level language could compile would permit
the current security server implementation to continue
to be used to enforce security.
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